
Hands-on session UT: Dafny
Big Software on the Run Winter School 2016

October 27, 2016

You are encouraged to work in pairs.

Name 1:

Name 2:

Please note that you should not modify any of the provided implementations (unless stated otherwise),
but only add annotations (in terms of pre- and post-conditions, invariants and assertions) to the code.
There are multiple correct solutions to the challenges, we encourage you to design the most compact
specifications. If you have any questions, don’t hesitate to raise your hand and ask the tutorial organizers.

We encourage you to provide the solutions as permalinks. Please hand in the solutions when you are
done so we can check them and determine a winner.

Introduction to Dafny
Dafny is a tool for verifying functional correctness of programs. A program, written in the Dafny
language, is annotated with a specification to describe the desired behaviour of each method. Dafny
then tries to verify if the implementation is correct.

The following example illustrates the main components of the specification language:
0 // view online at: http :// rise4fun .com / Dafny / dBwb
1 // return the index if the value is in a, otherwise return a negative value
2 method Find(a: array <int >, value : int) returns (index : int)
3 requires a != null
4 ensures index >= 0 ==> index < a. Length && a[index] == value
5 ensures index < 0 ==> forall k :: 0 <= k < a. Length ==> a[k] != value
6 {
7 index := 0;
8 while index < a. Length
9 invariant index <= a. Length

10 invariant forall k :: 0 <= k < index ==> a[k] != value
11 {
12 if a[index] == value {
13 return ;
14 }
15 index := index + 1;
16 }
17 index := -1;
18 }

The Find() method checks the array a and looks if it contains the element value. If this is the case,
it returns the corresponding index of the array and it returns a negative value otherwise.

• The code is annotated with the pre-condition requires a != null, indicating that the implemen-
tation should only be correct for the cases where the array a exists.

• The two ensures statements are called the post-condition and indicate the properties that should
hold after the method returns.

– The first statement specifies that if the returned index is positive, it must be smaller than
the array length and a[index] should point to value.

1

– The second statement specifies that of the returned index is negative, there should not be
any element value in the array a. Thus, we use forall to indicate that every element in the
array does not equal to value.

The while-loop is annotated with two loop-invariants. A loop-invariant is a property that is pre-
served by each iteration of the loop (thus it also hold before and after the loop). Verification with
loops is difficult, therefore Dafny often requires such loop-invariants to help the verification process.

– The first invariant simply states that index will never grow beyond a.Length. This invariant
is necessary for Dafny to ensure that the next invariant won’t go out of range (even though it
may seem obvious that index won’t grow larger than a.Length).

– The second invariant states that for every value k that we have seen ‘up to this moment’,
we have a[k] != value. This invariant is created to help verifying the post-condition of the
method; consider the case when index=a.Length.

The following code shows the use of predicates in Dafny. A sorted predicate is defined that checks
whether the array a is sorted. A predicate can be seen as a boolean function; it returns true if the
predicate holds, and false otherwise.

0 // view online at: http :// rise4fun .com / Dafny / p7jg
1 // returns true if the array is sorted
2 predicate sorted (a: array <int >)
3 requires a != null
4 reads a
5 {
6 forall j, k :: 0 <= j < k < a. Length ==> a[j] <= a[k]
7 }
8
9 // test method

10 method m()
11 {
12 var a := new int [3];
13 a[0] := 1; a[1] := 2; a[2] := 3;
14 assert sorted (a);
15 }

When verifying a program, you should be aware that the verification process is modular. This means
that if a program calls a method and this method returns, it only knows what is specified in the method
specification, i.e. we know the that the post-condition holds after the method returns. The verification
process can be described in three steps:

1. Prove termination; verify the program without pre- and post-conditions and check what needs to
be specified, to ensure the method terminates (normally, without exceptions).

2. Specify a post-condition; this is the part that you want to prove.

3. Verify that the post-condition holds; use Dafny to find out what additional information is required
to prove that the post-condition is true.

For more information on Dafny, please check: http://rise4fun.com/Dafny/tutorial/Guide

2

http://rise4fun.com/Dafny/tutorial/Guide

Challenge 1
Show that the following method m() correctly returns the maximum value over the set {a, b, a + b} by
providing a suitable specification in Dafny.

0 // view online at: http :// rise4fun .com / Dafny / YS7l
1 // returns the maximum over the values a, b, and a+b
2 method m(a: int , b: int) returns (m : int)
3 {
4 if a <= b {
5 if a > 0 {
6 return a + b;
7 }
8 return b;
9 }

10 if b > 0 {
11 return a + b;
12 }
13 return a;
14 }

Please provide the specification below (and indicate where it is inserted), or provide a permalink to your
Dafny implemenation:

Challenge 2a
The following function max() returns an index of the array a that points to its maximum value. First
check if Dafny can verify the program without any post-conditions, and provide specification where
required. Then, provide a post-condition that correctly describes the requirement for the method and
check what is necessary for Dafny to verify.

0 // view online at: http :// rise4fun .com / Dafny / DSxc
1 // return the index of the maximum element
2 method max(a: array <int >) returns (x: int)
3 {
4 x := 0;
5 var i := 0;
6 while i < a. Length
7 {
8 if a[x] < a[i] {
9 x := i;

10 }
11 i := i + 1;
12 }
13 return x;
14 }

Please provide the specification below (and indicate where it is inserted), or provide a permalink to your
Dafny implemenation:

3

Challenge 2b
The following program computes the same result as Challenge 2a, only here the implementation is a bit
more complicated. Show with Dafny that this program is also correctly implemented.

0 // view online at: http :// rise4fun .com / Dafny /8 gqY9
1 // return the index of the maximum element
2 method max(a: array <int >) returns (x: int)
3 {
4 x := 0;
5 var y := a. Length - 1;
6 while x != y
7 {
8 if a[x] <= a[y] {
9 x := x + 1;

10 } else {
11 y := y - 1;
12 }
13 }
14 return x;
15 }

Please provide the specification below (and indicate where it is inserted), or provide a permalink to your
Dafny implemenation:

Challenge 3
The following program sorts an array. Show that the sorting algorithm is correctly implemented. It may
be helpful to use a modified version of the sorted predicate.

0 // view online at: http :// rise4fun .com / Dafny / pl1Ty
1 // sorts the array a
2 method sort(a: array <int >)
3 {
4 var m := 0;
5 while (m != a. Length)
6 {
7 var k := m;
8 while (0 <= k -1 && a[k -1] > a[k])
9 {

10 a[k -1] ,a[k] := a[k],a[k -1];
11 k := k -1;
12 }
13 m := m+1;
14 }
15 }

Please provide the specification below (and indicate where it is inserted), or provide a permalink to your
Dafny implemenation:

4

