
54 | 3

Theme Software quality

Nour Assay Vincent Bloemen Mozhan Soltani Mariëlle Stoelinga Gamze Tillem

Joining scientific forces on big software
In the 3TU.BSR project, the three technical universities in the Netherlands are researching the run-time analysis of large
software systems. The University of Twente’s Mariëlle Stoelinga describes the project’s approach and goals.

S oftware is increasingly like a living or-
ganism, evolving constantly and auton-
omously. Through continuous delivery,

continuous deployment and their successor,
Devops, software is changing all the time. The
software that puts a book in your basket at a
web store may have been altered by the time
you reach the checkout screen. The key ques-
tion here is: how do you consistently ensure
the quality of such ever-evolving systems?

The project Big Software on the Run
(3TU.BSR), a joint endeavour of the Neth-
erlands’ three technical universities, focus-
es on the in vivo analysis of large software
systems. Because trends like Devops blur
the lines between development and deploy-
ment, system validation must shift from
testing and verification at design time to
monitoring at run time: only at run time do
we know the application context and can

we carry out the appropriate analyses and
– if needed – interventions.

The 3TU.BSR project is all about fully au-
tomatic monitoring and diagnosis. By log-
ging all system events and comparing the
traces thus obtained with a specification or
reference model, we can check system or ap-
plication correctness: does it behave accord-
ing to spec? The aim is to develop methods
that diagnose system faults automatically,

 3 | 55

and to synthesize recommended actions:
which components need to be debugged,
which components need replacing, which
components require more testing with what
inputs? And when we’re better off reconfig-
uring the system, which components and
subsystems should we reconfigure?

Software crashes
The key project ingredient is process min-
ing. Traditionally, there is a gap between
model-based process analysis methods such
as simulation and other business process
management techniques on the one hand
and data-centric analysis methods such as
machine learning and data mining on the
other. Process mining aims to bridge this
gap by providing tools and techniques for
automated process model discovery, con-
formance checking, data-driven model re-
pair and extension, bottleneck analysis, and
prediction based on event log data.

The group led by project leader Wil van
der Aalst at Eindhoven University of Tech-
nology is working on new process mining
techniques for big software. Researchers
are collecting and analyzing data from soft-
ware executing in its natural habitat and are
developing new scalable process discovery
methods to infer models that describe the
real behaviour of software systems. Through
smart visualization techniques, these mod-
els can be used to gain insight into what’s
really going on and where the software did
not behave as expected.

As manual model inspection may be cost-
ly and error-prone, the group is also de-
veloping new conformance checking tech-
niques. These detect deviations by aligning
a normative model with actual behaviour
(data), enabling us to analyze the software’s
performance. For instance, we can pinpoint

bottlenecks and slow code and the func-
tions or components in which they occur.

Monitoring should not affect program
behaviour. This is already a challenge in se-
quential programming; concurrent software
makes it even more of one. Marieke Huis-
man’s research group at the University of
Twente will develop a general-purpose ap-
proach based on local program annotations
and global properties. Runtime monitoring
is essential to check concurrent software’s
conformance during deployment. At the
same time, it provides insight into low-level
software events, generating a continuous
data stream that feeds discovery.

The research group led by Arie van Deurs-
en at Delft University of Technology is using
software execution data to automatically
reproduce reported software crashes. Typ-
ically, crash reproduction is the first step in
debugging software; however, manual crash
reproduction can be very labour-intensive
and time-consuming. The TU Delft group has
applied a novel technique based on evolu-
tionary algorithms to automatically replicate
the reported crashes based on the crash stack
traces. Future work will investigate the appli-
cation of additional state-of-the-art methods
to increase the range of software crashes sup-
ported by the automated technique.

Real insights
Another aspect of 3TU.BSR is data privacy,
a huge concern when monitoring large soft-
ware systems for things like medical devic-
es. The project focuses on the sensitivity of
the events collected from running software.
Inald Lagendijk’s TU Delft research group
aims to adapt well-known anonymization
and encryption methods for data publishing
to software analysis and develop a priva-
cy-preserving on-line conformance checking

framework on event logs. As the anonymized
or encrypted data might affect the accuracy
of operations as well as add computational
overhead, the framework should balance ac-
curacy and computational performance with
the level of protection and privacy provided.

To maintain the true mindset of in vivo
analysis, it’s important to use highly effi-
cient techniques. The Twente group led by
Jaco van der Pol focuses on developing par-
allel scalable algorithms for event analysis to
support online recommendations. Multicore
and symbolic model-checking techniques
are applied to efficiently and correctly check
for and predict abnormal behaviour.

Finally, visualization plays a crucial role
during the whole project life cycle to make
sure that the analysis results are easy to un-
derstand and provide real insights into sys-
tem behaviour. The TUE research group led
by Jack van Wijk is developing novel interac-
tive visualization techniques for huge event
streams generated by software execution. Ap-
propriate graphical visualization for software
behavioural patterns (or lack thereof) will
help software analysts make initial hypothe-
ses on how the software behaves and where
anomalies might occur. To avoid scalability is-
sues, the techniques developed should allow
the analysts to specify what they are inter-
ested in, and show only a subset of the data
using filtering, aggregation and abstraction.

Nour Assay (Eindhoven University of
Technology), Vincent Bloemen (University of
Twente), Mozhan Soltani (Delft University of
Technology), Mariëlle Stoelinga (University of
Twente) and Gamze Tillem (Delft University
of Technology) are involved in the 3TU.BSR
project.

Edited by Nieke Roos

The 3TU.BSR project
follows five tracks,
covering the different
areas where major
breakthroughs are
needed: discovery (T1),
conformance checking
(T2), prediction (T3),
recommendation (T4)
and infrastructure (T5).

